htmd.projections.gwpca module#
- class htmd.projections.gwpca.GWPCA(data, lag, units='frames')#
Bases:
object
Class for calculating the globally-weighted PCA projections of a MetricData object
References
N. Blöchliger, A. Caflisch, and A. Vitalis. Weighted Distance Functions Improve Analysis of High-Dimensional Data: Application to Molecular Dynamics Simulations, J. Chem. Theory Comput., 2015, 11 (11), pp 5481–5492. doi: 10.1021/acs.jctc.5b00618
- Parameters:
data (
MetricData
object) – The object whose data we wish to project.
Example
>>> gw = GWPCA(data) >>> dataproj = gw.project(5)
- project(ndim=None)#
Projects the data object given to the constructor onto ndim dimensions
- Parameters:
ndim (int) – The number of dimensions we want to project the data on.
- Returns:
dataTica – A new
MetricData
object containing the projected data- Return type:
MetricData
object
Example
>>> gw = GWPCA(data) >>> dataproj = gw.project(5)