htmd.projections.gwpca module#

class htmd.projections.gwpca.GWPCA(data, lag, units='frames')#

Bases: object

Class for calculating the globally-weighted PCA projections of a MetricData object

References

  • N. Blöchliger, A. Caflisch, and A. Vitalis. Weighted Distance Functions Improve Analysis of High-Dimensional Data: Application to Molecular Dynamics Simulations, J. Chem. Theory Comput., 2015, 11 (11), pp 5481–5492. doi: 10.1021/acs.jctc.5b00618

Parameters:

data (MetricData object) – The object whose data we wish to project.

Example

>>> gw = GWPCA(data)
>>> dataproj = gw.project(5)
project(ndim=None)#

Projects the data object given to the constructor onto ndim dimensions

Parameters:

ndim (int) – The number of dimensions we want to project the data on.

Returns:

dataTica – A new MetricData object containing the projected data

Return type:

MetricData object

Example

>>> gw = GWPCA(data)
>>> dataproj = gw.project(5)